Finger Force Prediction from Spinal Signals:
Machine Learning Pipeline for the Neural Drive
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Abstract—Estimating muscle force production from neural
drive is essential for advanced human-machine interfaces and
understanding motor control. Although motor unit (MU) spike
trains derived from high-density surface electromyography (HD-
SsEMG) have been used in gesture recognition and force estima-
tion, the role of neural drive feature granularity (i.e. level of detail
in its representation) in force regression remains understudied.
In this study, we recorded HDSEMG of the anterior forearm
from 25 participants performing isometric finger flexion and
compare three sets of neural drive-derived features of increasing
granularity: discharge rates (DRs) of ten representative MUs,
DRs from two cumulative spike trains (CSTs) from 5 early and 5
late recruited MUs, and DRs from a single CST from all 10 MUs.
These features were used to train regression models including
linear models, XGBoost, multilayer perceptrons (MLPs), and
recurrent neural networks (RNN, GRU, LSTM). Our results show
that higher granularity of neural drive-derived features improves
prediction, particularly in LSTM models, which achieved coeffi-
cient of determination values up to 0.944. Unlike prior subject-
and task-specific approaches, the proposed pipeline generalises
across participants and digits. These findings demonstrate that
MU-level detail is crucial for accurate force regression and offer
a foundation for generalisable MU-based neural interfaces.

Index Terms—high-density EMG, motor unit decomposition,
force prediction, finger force estimation, motor neurons.

I. INTRODUCTION

The decoding of human motor intent from electromyog-
raphy (EMG) has been a significant area of research, with
applications ranging from prosthetic control to assistive and
potentially commercial human-computer interfaces [1]-[3].
Many studies have focused on classifying hand gestures from
EMG signals recorded using a few electrodes or high-density
arrays. Recent advances have demonstrated the use of high-
density surface EMG (HDSEMG) for effective gesture-based
control of assistive devices and for recognising motion intent
by combining hand kinematics with HDsEMG from forearm
and far-field potentials [4], [5].
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Building on these EMG-based approaches, recent advances
in motor unit (MU) decomposition that non-invasively decode
individual motoneuron spike trains from HDSEMG have al-
lowed the characterisation of populations of MUs and their
behaviours related to muscle force and movement control
[6], [7], also known as the neural drive to muscles. More-
over, the online implementation of MU decomposition holds
the potential for novel neural interfaces that better exploit
human neural bandwidth by interfacing with several spinal
motoneurons recorded from each muscle [8], [9]. In particular,
MU decomposition from the forearm muscles yields a high
potential for gesture recognition and hand pose regression [2].
However, regression from MU spike trains and their discharge
rates to variable forces remains understudied.

This presents several challenges. First, MU decomposition
algorithms converge to a variable number of MUs across trials,
and the specific MUs decoded can also vary, which makes
MU drive-to force regression models unable to be trained on
a stable set of input features. Second, the abrupt recruitment
of MUs can cause sudden changes in their discharge rates,
resulting in non-smooth input features. Third, while various
methods have been used for MU-to-force regression [10]-[13],
a systematic evaluation of different models or how much detail
from the neural drive is necessary for optimal force represen-
tation has been lacking. A common approach involves using
the cumulative spike train (CST) derived from an arbitrary
number of MUs as input for force regression models, typically
as a baseline for comparison. However, due to the variable
number of MUs typically decoded per trial, approaches using
individual MU discharge rates have primarily been limited
to subject-specific or even subject-and-task-specific models,
which constrains their broader applicability.

To address these limitations, in this study we collected
a novel dataset from 25 participants, involving HDSEMG
recordings from hand extrinsic muscles during finger flexion
isometric contractions. We performed finger force regression
using features derived from decomposed MU spike trains,
systematically evaluating a range of machine learning models
for regression from neural drive-derived features of varying
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granularity. Here, feature granularity refers to the level of
detail in the neural drive representation, from individual MU
discharge rates (high granularity) to CSTs from multiple MUs
(low granularity). We hypothesised that features representing
a finer granularity of the neural drive would lead to improved
prediction accuracy.

A key goal of this work is to establish a more robust
method for dynamic finger force prediction by engineering
neural features from decomposed HDSEMG that can gen-
eralise across subjects and tasks. The standardised pipeline
approach presented here also has the potential to facilitate
dataset pooling across different subjects, tasks, and muscles,
which would enable the development of more complex models
that could benefit from deep learning approaches.

II. METHODS
A. Data collection

A custom finger force measurement device, similar in shape
to a vertical computer mouse, was designed on Autodesk
Inventor 2024 and then 3D-printed on an AnyCubic Kobra
3D printer and using polylactic acid filament (see Fig. 1a).
The device was fitted with load cells with a 10 kg range,
which allows recordings within the typical maximum isometric
pinch forces of the targeted fingers [14], [15]. In addition, the
device included Velcro straps to secure the hand and individual
fingertips to the sensors. The output of the load cells was
converted using a CJMCU-711 24-bit analog-digital converter
and sent to an Arduino Uno R3. Force data were sampled at 50
Hz and sent from Arduino to the PC via serial communication.

The EMG recording setup comprised two 64-channel elec-
trode grids with 5 rows x 13 columns topology and 8 mm inter-
electrode distance (HDO8MM1305, OT Bioelettronica, Turin,
IT), totaling 128 monopolar channels placed over the anterior
forearm (see Fig. 1b). Two Sessantaquatro (OT Bioelettronica,
Italy) were used to amplify and sample HDSEMG at 2000
Hz (see Fig. 1c). When needed, the participant’s forearm was
shaved, cleaned, and prepared with abrasive gel. The electrode
grids were attached using adhesive foams (FOAOSMM1305,
OT Bioelettronica, Turin, Italy) and the forearm was wrapped
with an additional fixation bandage.

The task consisted in following a trapezium force trace (see
Fig. 1d) by controlling finger forces applied over the sensors
using the dominant hand. The force trace had a 5-second
rest at the beginning and end, a 60-second plateau, and an
ascending and descending slope of 5% of the participant’s
maximum voluntary force (MVF). Participants should perform
the trials for each of the thumb, index and middle fingers
and at two target forces of 10% and 20% of their individual
maximum voluntary force, resulting in six distinct digit-force
level conditions and with five repetitions per condition. The
experimental protocol was approved by the Ethics Committee
of the University of Bayreuth (Application No. 24-030).

B. Feature extraction

The complete pipeline followed for signal processing and
feature extraction is shown in Fig. 2a. EMG trials were
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Fig. 1. Data collection setup. a) Custom finger force measurement device. b)
High-density electrode grids over forearm flexors (128 channels). ¢) Matlab
GUI showing the force trace visual stimulus. d) Trapezium force trace. e)
Single trial force recording with middle finger as the target for control.

first preprocessed using a 4th order Butterworth bandpass
filter between 20-500 Hz. Line interference was removed by
applying a Notch filter at 50 Hz and its harmonics. EMG
channels were then manually inspected for artifacts or high
noise levels, and flat or noisy channels were removed. MU
decomposition was then applied to the preprocessed trials
using the convolutive kernel compensation (CKC) algorithm
with peel-off [16], [17] for 100 iterations and a silhouette
threshold of 0.7. The decomposition was applied separately to
each electrode grid and then potential duplicates were removed
by comparing the discharge times between all MUs across the
grids and discarding those with over 30% matching spikes.
To standardise our pipeline, we further assessed the quality
of the spike trains to retain only those that had potential
to represent the neural drive controlling varying force. We
removed all MUs with tonic behaviour (firing throughout the
whole trial) or with MUs sparse activity (gaps in activity of
over 1s) during the force-active segment. Finally, we only
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kept trials that had at least 10 representative MUs, five early-
recruited MUs and five late-recruited. We chose this number
because 10 MUs have previously been shown to adequately
represent neural drive [18] and because models would struggle
with too few MUs known to have distinct non-linear rate
coding in relation to applied force [7]. The early and late-
recruited MU cohorts were defined as those MUs recruited
at a force less than or equal to half of the maximum target
force and those recruited at a force above half of the maximum
target force, respectively. When more than five MUs per cohort
met the criteria, the most active MUs as determined by their
number of spikes were kept. This step ensured that there was
a correlation over time between force activity and the activity
of the selected MUs.

For our regression features derived from neural drive, we
considered three different sets at different levels of granularity.

e« Ten MUs, five early-recruited and five late-recruited,
termed the “10MU” set (see Fig. 2d).

o Two cumulative spike trains, coming from the five early-
recruited and the five late-recruited MUs, termed the
“2CST” set (see Fig. 2e).

¢ One cumulative spike train from all ten MUs, termed the
“1CST” set (see Fig. 2f).

Continuous discharge rates (DRs) were calculated for each
feature spike train using a method derived from [19]. Support
Vector Regression (SVR) models were fitted from individual
MU spike trains with custom hyperparameters. For each MU,
the regularisation and kernel scale hyperparameters were found
after a grid search across 50-500 at increments of 10 and 0.5-
5 at increments of 0.5 respectively. The grid search aimed
to minimise the difference between the SVR estimation and
the continuous DRs produced by using the more conventional
approach of convolving the spike trains by a Hann window
[20], [21]. The window used for this study was 1 second long.

The trial segment used for regression modelling focused on
the initial force variation (see Fig. 2c), including the ramp-up
phase and two adjacent segments of equal time length (one-
third rest, one-third ramp-up, one-third constant plateau). This
selection aimed to capture transient behaviours during force
scaling and MU recruitment while maintaining a balanced
dataset for these phases. Input features were generated using
time windows ranging from 50 ms to 250 ms in 50 ms incre-
ments, with a 50% overlap between windows. The minimum
window length was chosen based on typical MUAP waveform
durations relevant for spike-triggered averaging (/225 ms).

C. Regression models

We trained and compared the following regression models
to predict finger force from the neural drive-derived features:
Linear Regression, Ridge Regression, Generalised Additive
Models (GAM), Generalised Linear Models (GLM), Multi-
layer Perceptron (MLP), XGBoost, Recurrent Neural Network
(RNN) and its variants, Gated Recurrent Units (GRU) and
Long Short-Term Memory (LSTM). Models were trained us-
ing 5-fold cross-validation, with performance averaged across
folds. We used mean squared error (MSE) loss for training
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Fig. 2. Processing pipeline from HDSEMG to neural drive-derived features
to predicted finger force. a) The steps for selection of motor neurons that
better represent neural drive and engineering them as input features are
highlighted in green. These steps make the resulting dataset and models
subject- and task-independent. b) Single trial showing force trace (black)
and 10 representative spike trains decomposed from HDSEMG. c¢) Ramp-up
phase of the trial. d) 10MU feature set: Smoothed discharge rates from the
10 MUs. e) 2CST feature set: Smoothed discharge rates from two cumulative
spike trains, coming from early and late recruited MUs respectively. f) 1CST
feature: Smoothed discharge rate from the total cumulative spike train.

and report the coefficient of determination (R?), mean abso-
lute error (MAE), and root-mean-squared error (RMSE) as
performance metrics.

Where applicable (i.e., for MLP, XGBoost, RNN-based
models), a grid search was performed for hyperparameter
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TABLE I

HYPERPARAMETERS PER MODEL AND INPUT FEATURE TYPE

Model Input features
name 10MU 2CST 1CST
hidden_dim: 64 hidden_dim: 64 hidden_dim: 64
MLP batch_size: 16 batch_size: 32 batch_size: 16
Ir: 1e-3 Ir: 1e-3 Ir: 1e-3
n_estimators: 50 n_estimators: 50 n_estimators: 50
XGBoost max_depth: 3 max_depth: 3 max_depth: 3
Ir: 0.1 Ir: 0.1 Ir: 0.1
hidden_dim: 128 | hidden_dim: 128 | hidden_dim: 128
RNN num_layers: 1 num_layers: 1 num_layers: 1
batch_size: 32 batch_size: 64 batch_size: 32
Ir: 1e-3 Ir: 1e-3 Ir: 1e-3
hidden_dim: 128 | hidden_dim: 128 hidden_dim: 64
GRU num_layers: 1 num_layers: 2 num_layers: 2
batch_size: 32 batch_size: 64 batch_size: 64
Ir: 1e-3 Ir: 1e-3 Ir: 1e-3
hidden_dim: 128 | hidden_dim: 128 | hidden_dim: 128
LSTM num_layers: 1 num_layers: 1 num_layers: 2
batch_size: 32 batch_size: 64 batch_size: 64
Ir: 1e-3 Ir: 1e-3 Ir: 1e-3

Ir: learning rate

tuning. The results presented consider the best-performing pa-
rameters for each model and input feature set, which are listed
in Table I. The models were implemented primarily in the
PyTorch framework and trained on a NVIDIA GeForce RTX
3080 GPU. For inference, to improve temporal resolution, a
sliding window with a step size of 50 ms (equal to the smallest
training window) was applied. Finally, a feature ablation
experiment was performed in the three best models trained
on the 10MU set. The experiment consisted of alternating
random removal of MUs from the early and late-recruited
cohorts, with the purpose of assessing how much the number
of active inputs impacts the model performance. To do this,
MUs were randomly masked alternating between cohorts and
then the performance (R?) was evaluated using the masked
input feature matrix. The random MU removal procedure was
started from 100 different random seeds.

III. RESULTS

We recruited 25 healthy participants (aged 28.8 + 7.7 years,
15 female, 22 right-handed) without reported neuromotor
pathologies. All participants gave written informed consent.
After preprocessing and visual inspection of the EMG data,
on average 6.5 + 4.3 bad channels per trial were excluded.

The initial decomposition procedure and removal of du-
plicate MUs yielded on average 429.8 + 158.4 MUs per
participant and 7.2 + 5.3 per trial. After applying the trial
inclusion criteria, only 166 of a total of 750 recorded trials
were included. Of these, the number of trials corresponding
to thumb, index, and middle finger flexion were 52, 45,
and 67, respectively. On average, 21.9+17.9% of trials were
included per participant. Most of the discarded trials were due
to particular participants with a low MU count yield after
decomposition, which could arise from individual differences,
as also seen in the inter-subject variabilities in previous work
[22], [23]. The final sets of MU spike trains, coming from
different subjects and task conditions, were then converted to
continuous discharge rates, segmented, and windowed.

A. Model performance comparison

The systematic evaluation of the regression models revealed
distinct performance characteristics based on the input feature
granularity and model complexity. Fig. 3a and Fig. 3b sum-
marise the performance of all models tested across the three
neural feature sets: 10MU, 2CST, and 1CST.

Among all models tested, the LSTM model with the 10MU
feature set achieved the highest performance, with an average
R? value of approx. 0.925 across window sizes and folds,
closely followed by the GRU model. In particular, the LSTM
model with an input window length of 50 ms had the overall
highest R? of 0.944, with minimum MAE of 1.24%MVF and
minimum RMSE of 1.88 %MVF. While the R? is on par with
subject-specific models from the literature, both the MAE and
RMSE values obtained here outperform them [10]-[13]. Other
models like MLP, XGBoost, and GAM also performed well
with the 10MU feature set, although typically with lower R?
values compared to the RNN variants. Linear models (MLR,
Ridge) generally showed the lowest performance across all
feature sets, highlighting the non-linear nature of the force-
neural drive relationship.

Fig. 3c shows force prediction traces for a representative
trial using the RNN, GRU, and LSTM models with the 10MU
feature set. These plots demonstrate the models’ capability to
track the ramp-up and plateau phases of the isometric con-
traction. The GRU and LSTM models show a closer fit to the
ground truth force compared to the vanilla RNN model. The
predictions capture the dynamic increase in force, although
deviations, more apparent in the RNN case, are present and
could be attributed to the onsets of MU recruitment.

B. Feature granularity analysis

Generally, models trained with the 10MU feature set, rep-
resenting the highest granularity of neural drive, consistently
achieved the best performance across all model types. This
pattern was most pronounced for complex models, particularly
RNN-based architectures. When using features with coarser
granularity (2CST and 1CST), the performance of RNN-based
models was still strong but less distinctly superior. In the
2CST case, the best performing model was the LSTM with
250 ms window (R%=0.825, MAE = 2.36%, RMSE = 3.35%),
closely followed by GRU with 250 ms window (R?=0.824,
MAE = 2.36%, RMSE = 3.35%). Simpler models provided
comparable performance, as in the case of XGBoost at 50
ms window (R?=0.823, MAE = 2.39%, RMSE = 3.37%).
In the 1CST case, model performances were close between
GRU at 250 ms window (R?=0.821, MAE = 2.43%, RMSE =
3.38%), LSTM at 250 ms window (R2=0.820, MAE = 2.47%,
RMSE = 3.39%), GAM at 200 ms window (12?=0.820, MAE
= 2.43%, RMSE = 3.40%) and XGBoost at 200 ms window
(R?=0.820, MAE = 2.44%, RMSE = 3.40%). These results
consistently demonstrated that finer neural drive granularity
resulted in greater model performance, particularly for more
complex RNNs.
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Fig. 3. (a) Model performance as a function of the input feature set. Error
bars represent standard deviation across folds and window sizes. (b) Model
performance as a function of the window used for training in ms. Error
bars represent standard deviation across folds and type of input feature.
(c) Performance of RNN-based models in predicting finger force for a trial
of subject 9 with target force 20%MVF and the thumb finger. (d) Feature
ablation results on the top three performing models. Shaded areas represent
the standard deviation across 100 runs of MU random masking.

C. Feature ablation

Fig. 3d shows the results of the feature ablation experiment.
The performance of models decreases monotonically as more
MUs become inactive, with a collapse when 6 MUs are
masked. The decrease followed a quasilinear pattern for both
LSTM and GRU models, with standard deviations across runs
also increasing linearly as more MUs became inactive. This
suggests that individual MUs contribute similarly to model
performance, and that maintaining a sufficient number of
active MUs is critical for reliable force prediction.

IV. DISCUSSION

This work systematically evaluated the impact of neu-
ral drive granularity and model complexity on finger force
regression using neural drive-derived features. Our results
demonstrate that detailed representations, specifically con-
tinuous DRs of 10 selected MUs, consistently yield higher
prediction accuracy, particularly when combined with RNN
architectures such as LSTM and GRU. This suggests that
preserving individual MU firing behaviour is beneficial for
accurately regressing variable force. Crucially, models trained
on these features generalised well across subjects and tasks,
despite the relatively small number of input MUs.

The performance gap between models was most pronounced
with finer-grained input. LSTM networks significantly out-
performed others with the 10MU feature set, potentially due
to their ability to capture temporal dynamics in discharge
patterns. In contrast, for coarser features such as single or dual
CSTs, simpler models like XGBoost and GAM were compet-
itive, sometimes outperforming more complex networks. This
suggests that when input features are less detailed, additional
model complexity may risk overfitting.

Our focus on the ramp-up phase of isometric contraction
proved particularly informative, capturing MU recruitment and
rate modulation processes that encode force scaling. The fea-
ture ablation experiment revealed that force decoding remained
viable when few MUs were inactive, but degraded quasilin-
early as the number of inactive MUs increased, suggesting
similar importance across MUs for model performance.

Beyond model performance, our pipeline introduces a re-
producible method for selecting early- and late-recruited MUs,
standardising feature extraction and cross-subject data pooling.
A significant implication of our pipeline is its potential for
integrating heterogeneous HDSEMG datasets. Transforming
multichannel EMG into MU spike trains shifts the focus from
spatiotemporal patterns to temporal neural firings. This stan-
dardisation makes our approach robust to variations in elec-
trode placement, enabling the pooling of data from different
setups to build large-scale neural drive databases, which would
in turn improve model robustness. Nonetheless, a drawback of
our pipeline was the need for at least 10 input MUs, which
resulted in many trials being discarded. Future work should
focus on adapting the model to handle incomplete inputs, thus
allowing all or most trials to meet the inclusion criteria.

However, integrating diverse datasets poses the challenge
of negative transfer. This phenomenon, where combining
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data from heterogeneous sources degrades performance, is
a known challenge in brain-computer interfaces based on
electroencephalography (EEG) and EMG [24]-[26]. It typ-
ically arises from differences in both electrode placement
and the underlying task domains. Our approach addresses
heterogeneity in electrode placement, by relying on temporal
MU activity, but future work should investigate the benefits
and challenges of including data from different tasks and
muscles. Importantly, cross-participant generalisation in EMG-
based neural interfaces has recently been demonstrated at
large scale [3]. While their landmark work confirms the
feasibility of building generic EMG interfaces, our results
show that a complementary pathway towards generalisable
neural interfaces exists at the level of MU activity.

V. CONCLUSION

This study demonstrates that finger force can be accurately
predicted from MU spike trains, with finer-grained neural drive
representations (10 MUs) yielding higher accuracy (R? up to
0.944) than coarser features, especially with LSTM models.
Our standardised pipeline enables robust cross-subject gener-
alisation, overcoming a key limitation of subject-specific ap-
proaches and providing clear evidence that preserving motor-
unit level detail is crucial for accurate force regression

The pipeline’s transformation of HDSEMG data into stan-
dardised MU-based features potentially enables integration of
heterogeneous datasets from different electrode configurations
and muscle groups into large-scale neural drive databases. This
standardisation approach can extend beyond finger force pre-
diction to other muscle groups and isometric contraction tasks.
Future work should investigate domain adaptation techniques
for enhanced generalisability across different datasets.
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