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Abstract—Reliable motor unit (MU) tracking across varied
finger force conditions is crucial for neural interfaces that must
function beyond controlled laboratory settings. We investigated
whether individual MUs can be tracked between constrained
force tasks and naturalistic finger force patterns using high-
density surface EMG. Twenty-five participants performed iso-
metric flexion of thumb, index, and middle fingers at 10 %
and 20 % of maximum voluntary force, plus unconstrained
multi-finger tasks, while recording multichannel EMG from
the anterior forearm muscles. MU decomposition identified 302
± 90 MUs per participant, with recruitment increasing 45-
70% when force doubled. Spatial activation patterns matched
anatomical expectations: thumb MUs were localised radially;
index/middle finger MUs, ulnarly. Notably, 96.7 % of MUs could
be tracked across different trials of the same or different
conditions at correlation threshold 0.7, with 62.8 % remaining
trackable at 0.9 threshold. More MUs were shared between
index and middle finger tasks than with thumb tasks, reflecting
anatomical organization. Cross-condition tracking was highly
dependent on the correlation threshold, with 0.9 required for
reliable individual MU identification. These findings show that
subject-specific MU patterns can be tracked across controlled
and naturalistic conditions, which is crucial for future MU-based
neural interfaces in real-world applications.

Index Terms—high-density EMG, motor units, isometric con-
traction, neural signal processing

I. INTRODUCTION

Surface electromyography (EMG) of hand and finger move-
ments enables intuitive neural interfacing with assistive de-
vices that enhance mobility in daily life [1]–[3]. Muscle
contractions are driven by the motor cortex [5], [6], which
sends electrochemical signals through the spinal cord to motor
units (MUs) — muscle fibers activated by α-motor neurons.
These motor unit action potentials (MUAPs) trigger muscle
movement, and their combined activity at a site forms the
EMG signal [7]. Although EMG recording and processing
are now straightforward [8], interpretation remains complex.
Current approaches include classifying EMG using statistical
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or neural network methods [9]–[11] or decomposing signals
into MU spike trains [3], [4], [12].

MU decomposition over multichannel EMG signals applies
blind source separation techniques, often based on independent
component analysis (ICA), to extract individual MUs spiking
discharge times [13], [14]. This also enables the characteri-
sation of MUs by their force-dependent recruitment threshold
[15], [17], [18]. Moreover, the output of the algorithm can
also be used to compute MUAP waveforms across all EMG
channels by spike-triggered averaging. Spatial distribution and
waveform shapes of MUAPs can then be used to track MU
activity across different tasks using a method called MU
tracking [12], [18], [19].

Previous studies focused on tracking MUs in large leg
muscles (e.g. the tibialis anterior) where MUs can be more
easily and reliably decoded due to their anatomical properties.
One application was to analyse muscles contractions with
varying strength across sessions to explore how training affects
MU activity [19], [20]. More recent work applies MU tracking
to finger movements, linking MUs to changes in finger position
[12] or exerted force [21]. In all these cases, MUs are tracked
across mostly controlled tasks, where muscle force is isometric
and maintained at a constant level most of the time.

To explore the feasibility of MU tracking between con-
strained and more naturalistic conditions, we investigated
whether MUs decoded from forearm muscles during con-
strained finger force tasks can be tracked into different con-
strained and unconstrained tasks. We recorded multichannel
EMG signals from the forearm during isometric flexion of
the thumb, index, and middle fingers using a custom finger
force-measuring device. The goal of this study was to analyse
MU activity in relation to applied force, using MU tracking
to identify patterns and differences in MU behaviour during
constant versus unconstrained finger force application.

II. MATERIAL AND METHODS

A. Experimental setup

For the recording of finger forces, a custom measurement
device, akin to a vertical computer mouse, was designed
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Fig. 1. (a) Custom finger force recording handheld device consisting of (1) Arduino Uno R3 (2) Protoboard (3) Case with CJMCU-711 A/D converters (4)
Size adjustment (5) C-clamp fixation (6) Case with embedded load cells (b) Two applied 64-channel rectangle electrode grids on the forearm (c) Experimental
setup: The participant sits in front of a monitor displaying the force trace during application of finger force to the computer mouse-like device. A few EMG
channels’ signals are also displayed in real-time (d) Trapezium force trace used in constant force trials (e) Example trial from unconstrained force condition.
The pattern is volitionally chosen by the participant.

on Autodesk Inventor (Version 2024, Autodesk, San Fran-
cisco, USA) and then 3D-printed (AnyCubic Kobra, Anycubic,
Shenzhen, China) using polyactic acid filament (Fig. 1a). The
device was fitted with load cells for the 10 kg range, which
allows recording within the typical maximum isometric pinch
forces of the targeted fingers (72.8± 23.4 N for the thumb;
42.6± 12.5 N for the index; 39.0 ± 7.6 N and 50.0± 9.7 N
for the middle finger of men and women, respectively [22],
[23]). The output of the load cells was converted using a
CJMCU-711 24-bit analog-digital converter and sent to an
Arduino Uno R3 (Arduino, Strambino, Italy). Force data were
sampled at 50 Hz and sent from Arduino to the PC via serial
communication. Versions were created for both left- and right-
handed users, with adjustable sizing for the hand. EMG signals
were recorded over the anterior forearm with two 64-channel
electrode grids (13x5 electrodes, 8 mm inter-electrode dis-
tance, HD08MM1305, OT Bioelettronica, Turin, Italy, Fig. 1b)
at a sampling frequency of 2000 Hz using two wireless analog-
to-digital converters (Sessanataquattro+, OT Bioelettronica,
Turin, Italy) and a SyncStation (OT Bioelettronica, Turin,
Italy). The anterior forearm was shaved, cleaned and prepared
with a abrasive skin preparation gel. EMG electrode grids
were applied using adhesive foam layer (FOA08MM1305, OT
Bioelettronica, Turin, Italy) with a conductive paste. To ensure
better skin contact with the electrodes, the electrode grids were
additionally fixed to the forearm with bandages.

B. Protocol

The experimental protocol began with the removal of all
electronic devices, collection of personal data, assessment of

handedness using the Edinburgh Handedness Inventory, and
measurement of maximum grip force of the dominant hand
using a PowerLab 26T (Model PL26T04, ADInstruments,
Dunedin, New Zealand; sampling rate: 5 Hz).

Force measurements were calibrated to each participant’s
maximum voluntary force (MVF) for each finger of the
dominant hand to enable cross-subject comparisons. Prior to
the recording, the maximum force for each finger was used to
normalise forces applied during individual trials.

EMG signals and forces from the thumb, index, and middle
fingers of the dominant hand were recorded at constant force
levels of 10 % and 20 % MVF. A MatLab (Version R2024b,
The MathWorks, Natick, USA) script displayed the target force
on a monitor (Fig. 1c) using a trapezoidal profile consisting
of 5 s rest, 5 %MVF/s force ramp-up to the target 60-second
plateau, and then 5 %/s ramp-down, ending with 5 s rest
(Fig. 1d). Additional 20 s trials involved unconstrained force
application by one to three fingers for more realistic data
(Fig. 1e). Each finger underwent five trials at 10 % and 20 %
MVF, followed by five unconstrained trials.

C. Data collection

Data were collected from 25 healthy adult subjects (age:
28.8± 7.7 years; 15 female; 22 right-handed; max grip force:
372.7± 128.6 N; Body-Mass-Index: 25.1± 5.7 kg/m2) with no
reported neuromotor disorders. All participants gave informed
and voluntary written consent. The study was approved by
the University of Bayreuth ethics committee (Application No.
24-030).
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Fig. 2. (a) EMG data processing pipeline: After decomposition into MU discharge times/spike trains, superimposition of the EMG data is achieved by
calculating the spike-triggered average to get MUAP waveforms (black) per recorded EMG channel (left box: rejected by filter, right box: accepted, green
dot: global maximum, red dot: global minimum, blue: signal curve, yellow: noise curve); assigning the peak-to-peak values to the placement of the EMG
channels creates an activation map (b) Spike trains and force curves of thumb (red), index finger (blue) and middle finger (green) after decomposition of a
constrained force trial at 20 % MVF of the middle finger (c) unconstrained force trial of multiple finger force application of thumb (red), index finger (blue),
and middle finger (green) with corresponding filtered MUs marked by its number and their spike trains (gray) (d) Visualisation of MU tracking applied to
MU 3 from trial 4 of the middle finger at a constant force of 20 % MVF (left: activation map, middle: MUAP waveforms in black) with MU 2 of the trial 5
in unconstrained force condition (right: activation map, middle: MUAP waveforms in magenta), from participant 15.

D. Signal Processing

The EMG signals were preprocessed with a Notch filter to
suppress 50 Hz power line noise and its harmonic frequencies,
and a bandpass filter from 20 - 500 Hz for the neuronal
signals [7]. Electrode channels were visually inspected and
noisy or flat channels (6.5± 4.3 per trial) were removed.
MU spike trains were obtained from the multichannel EMG
data using the blind source separation algorithm for MU
decomposition from Negro et al. with 100 iterations and a
0.7 silhouette threshold [14]. Briefly, a fixed-point iteration
procedure can be used to obtain separation vectors which
convert the multichannel EMG into a variable number of
individual MUs. As MU firings are inherently sparse over
time, the aim of the algorithm is to maximise the sparsity of
the detected sources (i.e. the MUs), thus extracting the sparse
spike trains of individual MUs from complex, overlapping
EMG signals. The algorithm was applied to each electrode grid
separately, and then duplicate MUs were removed. Two spike
trains are considered duplicates of the same MU when the
number of common spikes (i.e. with same discharge timings)
between them exceeds 30% of the total number of spikes in the
MU with more spikes. The spike train with lower coefficient
of variation (CoV) of inter-spike intervals (ISI) is the one kept.
For each MU, spike-triggered averaging over the multichannel
EMG time series determined the MUAP waveforms and their
peak-to-peak values (Fig. 2a) [15].

E. Motor unit filtering

In addition, we analysed and discarded low-quality or phys-
iologically implausible MUs applying several criteria. First,
we removed MUs with tonic behaviour (active throughout the
whole trial) or with activity outside the force-active segments

of the trace. In the constrained trials, we also removed MUs
active 5 s prior to force application. To further filter out
implausible MUs, we also removed MUs with mean firing
rates below 5 spikes/s [16]. Additionally, we removed MUs
with low MUAP waveform amplitudes (peak-to-peak values)
relative to others in the trial. This implied computing the
mean signal-to-noise ratio (SNR) of all MUAP waveforms per
MU and discarding the MU if that SNR was less than 5 dB.
MUs with physiologically implausible MUAP waveforms were
determined by counting the peaks and valleys in the waveform.
If this number exceeded four, an overlap of two or more MUs
was assumed and the MU was removed. As illustrated in
Fig. 2a, examples of a removed MU and a retained MU are
displayed in boxes.

Filtered MU spike trains for constrained and unconstrained
force are shown in (Fig. 2b) and (Fig. 2c). The number of
filtered MUs was statistically analysed, and as the data was not
normally distributed (Shapiro-Wilk test, p < 0.05), differences
were assessed using the Wilcoxon signed rank test. Activation
maps were created from the filtered MUs to visualise their
spatial distribution [24], with missing values replaced by
median values from neighbouring channels.

F. Motor unit tracking

To track MUs across trials, the activation maps and MUAP
waveforms of filtered MUs were analysed (Fig. 2d). First,
pairwise correlations between activation maps were calculated
using Spearman’s rank-order correlation coefficient, as the
data were not normally distributed (Shapiro-Wilk test, p <
0.05). Correlations were considered significant if the Spearman
coefficient met or exceeded a predefined threshold. Spearman
rank-order coefficients allowed comparison of MU positions
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regardless of linearity. Next, MUAP waveforms were com-
pared via cross-correlation of waveforms recorded from the
same channels across different trials. The maximum cross-
correlation value was normalised to the signal magnitudes,
and if the mean of all normalised cross-correlations exceeded
the threshold, the MU correlation was accepted. Correlation
thresholds of 0.7, 0.8, and 0.9 were applied.

This tracking procedure was used to identify common MUs
across all trials for each subject. The ratio of tracked MUs
was calculated by dividing the number of matching MUs
across trials by the total number of filtered MUs in each trial
condition. This was repeated for each correlation threshold.

III. RESULTS

A. Decomposed and filtered motor units
Across all trials, the total number of filtered decoded MUs

was 302.4 ± 89.7 per subject. The number of filtered MUs per
trial at constrained conditions for thumb, index, and middle
finger at 10 % MVF were 5.5± 3.8, 6.7± 5.1, 7.1± 4.8; at
20 % MVF 7.7± 4.1, 9.6± 5.9, and 11.3± 6.2. Fig. 3 shows
a box plot of the average number of filtered MUs per trial
across conditions.

thumb index finger middle finger

Fig. 3. Number of filtered MUs resolved for each trial of constrained force
application at 10 and 20 % maximum voluntary force (MVF) of the thumb
(red), index finger (blue) and middle finger (green), Mean values marked with
(***) differed significantly with a p-value < 0.001.

Our filtered MU counts per condition are comparable to
those reported in previous studies [12], [21]. More MUs are
recruited at higher force levels. The number of filtered MUs
per trial for individual finger flexions differs significantly
between 10 % and 20 % MVF per digit (p-value < 0.001).

In unconstrained force trials, an average of number of
67.2± 38.9 MUs were resolved per trial, with 13.9± 6.9 MUs
after filtering. MU counts varied widely since only a 20 %
MVF maximum force limit was set. Unlike constant force
trials, continuously active MUs were retained, and multiple
finger movements could occur simultaneously, resulting in a
higher total MU count.

B. Activation maps from constrained force trials

The activation maps of each grid were summarised from the
filtered MUs of the constrained trials and the mean value per
MU is shown in Fig. 4. The shown maximum peak-to-peak
value of average MU is higher at 20 % MVF than at 10 %.
A more detailed analysis of the average maximum peak-to-
peak values for each finger reveals increases of 45.5 % for the
thumb, 69.7 % for the index finger, and 58.3 % for the middle
finger, at 20 % MVF application compared to 10 % MVF.

Fig. 4. Left: Recording area on the proximal forearm with black dots
showcasing electrode positions. Right: Activation maps over the two 64-
channel grids during constrained force trials of the thumb, index, and middle
finger, at 10 % MVF (top) and 20 % MVF (bottom).

Active MU areas differ by finger. During thumb flexion,
activation is mainly radial, while index and middle finger flex-
ion show ulnar activation, reflecting the anatomical structure:
the thumb is controlled by the radial flexor pollicis longus,
and the index and middle fingers by the ulnar flexor digitorum
profundus [25]. Additionally, index finger flexion is associated
with more proximal MU activation than that of the middle
finger.

C. Motor unit tracking

To track MUs across trials, activation maps and MUAP
waveforms of MUs from different trials were compared. The
average number of tracked MUs and the average ratio to the
maximum MU count of a single subject are shown in Table I.

As shown in Table I, more MUs are tracked at lower
correlation thresholds. At a threshold of 0.7, nearly all MUs
are tracked in at least one other trial. Even at 0.9, 62.77 % of
MUs are still matched per subject, indicating reliable tracking
across trials. The sharp rise in tracked MUs at lower thresholds
might be due to overlapping activation areas, where a single

TABLE I
NUMBER OF TRACKED MUS AT DIFFERENT CORRELATION THRESHOLDS

Correlation 0.7 0.8 0.9threshold
Tracked MUs 292.1 ± 93.1 264.7 ± 89.2 180.3 ± 72.1per subject
Compared to 96.72 ± 2.23 89.57 ± 3.50 62.77 ± 10.57all MUs [%]
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MU may be linked to multiple others rather than forming
distinct one-to-one matches.

Fig. 5 provides a detailed overview of MU tracking across
conditions based on the correlation threshold. Each cell shows
the number of MUs decoded from one condition (columns)
and tracked to another condition (rows). For example, at a
correlation threshold of 0.7, 362 MUs decoded in 10 % MVF
thumb flexion trials (52.92 % of all MUs for that condition)
were tracked into 10 % MVF index finger flexion trials. Several
MUs are shown to be tracked across all conditions and
correlation thresholds. The matrices are not symmetrical, as
there are five trials per condition and the MUs are also matched
with multiple others within the same condition.

Most tracked MUs are found in constrained trials involving
the same finger, especially at the higher correlation threshold
of 0.9. Additionally, more MUs are tracked between index and
middle finger trials than between the thumb and either finger.
These patterns reflect the spatial distribution of MU activity,
as shown in Section III-B. Activation areas are similar when
the same finger applies different force levels, and also between
the index and middle fingers. In contrast, the MU activation
areas during thumb flexion differ significantly, leading to fewer
shared MUs with the other fingers.

When comparing constrained and unconstrained conditions,
more MUs are tracked between the index and middle fingers
than between the thumb and either finger. This could be due
to the lower number of decoded and filtered MUs in thumb
trials compared to the index and middle fingers. Similarly,
fewer MUs were tracked at lower force levels, as fewer MUs
were identified under these conditions.

Fig. 5 demonstrates that higher correlation thresholds yield
more accurate MU tracking, prompting the question of whether
individual MUs can be reliably assigned to specific finger
movements. Table II presents the average number of MUs
tracked from constrained trials into same-digit tasks, into
different-digit tasks, or into unconstrained conditions per
subject. It also indicates whether these MUs were tracked
exclusively within those specific conditions. As previously
observed, more MUs are tracked in trials involving the same
finger than across different fingers, with a higher proportion

TABLE II
TRACKED MUS FROM EVERY DIGIT INTO SAME-DIGIT TRIALS, INTO

DIFFERENT-DIGIT TRIALS, AND INTO UNCONSTRAINED TRIALS

Digit
Thumb Index Middle

Initial MU pool per
digit 65.3 ± 27.7 87.8 ± 39.1 104.9 ± 41.9

Tracked into same
digit only 22.0 ± 15.5 16.6 ± 13.2 27.2 ± 22.1

Tracked into same
and different digits 20.08 ± 22.9 33.4 ± 25.7 36.6 ± 25.6

Tracked into different
digits only 5.8 ± 8.3 8.4 ± 9.1 6.0 ± 5.9

Tracked into uncon-
strained trials 10.6 ± 12.1 19.2 ± 19.0 56.2 ± 80.3

*Results at 0.9 matching correlation threshold
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Fig. 5. Number of tracked MUs and percentages (in brackets) relative to the
total number of MUs in each condition (digit and force level combination,
or unconstrained). MU counts come from all subjects with MU tracking
applied between all trials with different conditions. Different thresholds for
the correlation of activation maps and cross correlation of MUAP waveforms
were tested: 0.7 (top), 0.8 (middle), 0.9 (bottom). Columns correspond to
the conditions in which MUs were initially decoded and rows correspond to
the condition into which they were tracked. Constrained and unconstrained
trial conditions are separated by red horizontal and vertical lines. Coloured
rectangles frame same-digit conditions (thumb: red, index finger: blue, middle
finger: green)
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dedicated to individual finger movements. High standard de-
viations reflect participant-specific variability in the number
of resolved MUs, especially in unconstrained tasks. Tracking
across different fingers yields fewer MUs, with very few being
task-specific. This indicates that while many MUs are uniquely
involved in single-finger movements, only some contribute to
only multiple-digit actions. To more precisely assign MUs to
specific force levels and finger movements, it is necessary to
conduct more extensive experiments involving both single- and
multi-digit tasks.

IV. CONCLUSION

This study shows the feasibility of reliable MU track-
ing across constrained and unconstrained finger force tasks,
achieving 96.7% tracking success at correlation threshold 0.7
and 62.8% at the stringent 0.9 threshold. Reliable individual
MU identification requires high correlation thresholds, creating
a trade-off between detection sensitivity and identification
specificity.

MU recruitment increased predictably with force (45-70%
when doubling from 10% to 20% MVF), and spatial activation
patterns aligned with anatomical expectations: radial activa-
tion for thumb flexion, ulnar for index and middle fingers.
Greater MU overlap occurred between index and middle
finger tasks than with thumb combinations, reflecting shared
neural control mechanisms. However, substantial individual
variability, particularly in unconstrained conditions, indicates
that subject-specific calibration will be essential for robust
implementations.

This work provides a baseline for subject-specific MU-
based neural interfaces capable of functioning in naturalis-
tic movement scenarios by reporting quantitative results in
MU tracking beyond controlled force traces. However, the
correlation threshold dependency and individual differences
highlight the need for personalised approaches. Future work
should validate these methodologies in real-time applications
and develop adaptive algorithms to optimise the robustness of
MU tracking in naturalistic manipulation scenarios.

REFERENCES

[1] M. Xiloyannis, Constantinos Gavriel, Andreas, and A. A. Faisal, “Dy-
namic forward prediction for prosthetic hand control by integration of
EMG, MMG and kinematic signals,” vol. 26, pp. 611–614, Apr. 2015.

[2] J. Eden et al., “Principles of human movement augmentation and the
challenges in making it a reality,” Nature Communications, vol. 13, no.
1, Mar. 2022.

[3] D. S. Oliveira et al., “A direct spinal cord–computer interface enables
the control of the paralysed hand in spinal cord injury,” Brain, Mar.
2024.

[4] R. Mio, J. Narayan, and A. A. Faisal, “Motor Unit Decomposition
Over Intrinsic Hand Muscles During Single and Multi-finger Flexion,”
Biosystems & biorobotics, pp. 115–119, Jan. 2025.

[5] S. C. Cramer, S. P. Finklestein, J. D. Schaechter, G. Bush, and B. R.
Rosen, “Activation of Distinct Motor Cortex Regions During Ipsilateral
and Contralateral Finger Movements,” Journal of Neurophysiology, vol.
81, no. 1, pp. 383–387, Jan. 1999.

[6] G. Hotson et al., “Individual Finger Control of the Modular Prosthetic
Limb using High-Density Electrocorticography in a Human Subject,”
Journal of neural engineering, vol. 13, no. 2, p. 026017, Apr. 2016.

[7] R. Merletti and S. Muceli, “Tutorial. Surface EMG detection in space
and time: Best practices,” Journal of Electromyography and Kinesiology,
vol. 49, p. 102363, Dec. 2019.

[8] H. Tankisi, “Standards of instrumentation of EMG,” Clinical Neurophys-
iology, vol. 131, no. 1, pp. 243–258, Jan. 2020.

[9] A. Moin et al., “A wearable biosensing system with in-sensor adaptive
machine learning for hand gesture recognition,” Nature Electronics, vol.
4, no. 1, pp. 54–63, Dec. 2020.

[10] A. Toro-Ossaba, J. Jaramillo-Tigreros, J. C. Tejada, A. Peña, A. López-
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